Problem 18

Prove that $1+3+5+\cdots+(2 n-1)=n^{2}$.

Solution

Prove this by using the principle of mathematical induction. Start by showing that the base case is true. If $n=1$, then

$$
1=1^{2}=1 .
$$

Now assume the inductive hypothesis, that is,

$$
1+3+5+\cdots+(2 k-1)=k^{2}
$$

where k is a positive integer. The aim is to show that

$$
1+3+5+\cdots+[2(k+1)-1]=(k+1)^{2} .
$$

We have

$$
\begin{aligned}
(k+1)^{2} & =k^{2}+2 k+1 \\
& =[1+3+5+\cdots+(2 k-1)]+2 k+1 \\
& =1+3+5+\cdots+(2 k-1)+(2 k+1) \\
& =1+3+5+\cdots+(2 k-1)+[2(k+1)-1] .
\end{aligned}
$$

Therefore, by the principle of mathematical induction, $1+3+5+\cdots+(2 n-1)=n^{2}$ if n is a positive integer.

